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Abstract We examine a phase transition in a model of random spatial permutations which
originates in a study of the interacting Bose gas. Permutations are weighted according to
point positions; the low-temperature onset of the appearance of arbitrarily long cycles is con-
nected to the phase transition of Bose-Einstein condensates. In our simplified model, point
positions are held fixed on the fully occupied cubic lattice and interactions are expressed as
Ewens-type weights on cycle lengths of permutations. The critical temperature of the tran-
sition to long cycles depends on an interaction-strength parameter α. For weak interactions,
the shift in critical temperature is expected to be linear in α with constant of linearity c. Us-
ing Markov chain Monte Carlo methods and finite-size scaling, we find c = 0.618 ± 0.086.
This finding matches a similar analytical result of Ueltschi and Betz. We also examine the
mean longest cycle length as a fraction of the number of sites in long cycles, recovering an
earlier result of Shepp and Lloyd for non-spatial permutations.

Keywords Random graph · Phase transition · Branching process

1 Introduction

The model of random spatial permutations arises in the study of the Bose gas. Its his-
tory includes Bose-Einstein, Feynman [8], Penrose-Onsager [13], Sütő [18, 19], and Betz-
Ueltschi-Gandolfo-Ruiz [3, 4, 9, 20]. Such random permutations arise physically when one
symmetrizes the N -boson Hamiltonian with pair interactions, then applies a multi-particle
Feynman-Kac formula and a cluster expansion [3, 4]. Specifically, given points x1, . . . ,xN

in the box [0,L]3 and temperature T , permutations π are given probability weights propor-
tional to the Gibbs factor e−H(π) where

H(π) = T

4

N∑

i=1

‖xi − xπ(i)‖2
� (1.1)
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for the non-interacting case. The notation ‖ · ‖� indicates the natural distance on the 3-torus:

‖x − y‖� = min
n∈Z3

{‖x − y + Ln‖} (1.2)

(The sum in (1.1) is scaled by temperature rather than reciprocal temperature. This surprising
feature is opposite that of many models in statistical mechanics.) These energy terms involve
lengths of permutation jumps; additional interaction terms take the form

∑

i<j

V (xi ,xπ(i),xj ,xπ(j)), (1.3)

i.e. permutation jumps from sites xi and xj interact pairwise. In the above-cited papers of
Betz and Ueltschi, these may be approximated and rearranged such that one obtains interac-
tion terms of the form

N∑

�=1

α�r�(π) (1.4)

where r�(π) counts the number of �-cycles of the permutation π , and the coefficients α� are
cycle weights.

When the Bose gas is cooled below a critical temperature Tc , there is a phase transi-
tion: a macroscopic fraction of the bosons are found in the ground state of the external
potential, and such particles are said to participate in a Bose-Einstein condensate. In the
permutation representation, this transition manifests itself as the onset of long permutation
cycles. Bose suggested the statistics carrying his name for describing the gas of photons;
Einstein developed the notion of what we now call Bose-Einstein condensation, and com-
puted the critical temperature for the non-interacting Bose gas. The critical temperature for
liquid helium, where interparticle interactions are strong, is lower than would be expected
[1] for non-interacting atoms of the same density. For weakly interacting systems, however,
an emerging consensus is that interactions increase the critical temperature. See [1, 16] for
surveys. Concretely, for interactions parameterized by some α, one defines

�Tc(α) = Tc(α) − Tc(0)

Tc(0)
.

It is well accepted that

lim
α→0

�Tc(α) = cρ1/3α

where ρ is the particle density, i.e. that for small α the shift in critical temperature is linear
in α. What is more contentious, as enumerated in the surveys cited above, is the value of the
constant c.

The interaction terms (1.3) for the permutation representation of the Bose gas are difficult
to compute. Moreover, it is interesting to consider the model of random spatial permutations
for its own sake. In [9], a simulational approach is taken for points held fixed on the fully
occupied unit lattice in the non-interacting case. In the papers [3, 20], Betz and Ueltschi
examine the Bose-gas permutation weights with point positions allowed to vary on the con-
tinuum; an exact expression for the critical temperature is stated and proved for a simplified
interaction model in which only two-cycles interact. That is, interactions are of the form of
(1.4) with α2 = α, where α is related to a hard-core scattering length, and the remaining
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cycle weights are zero. In [4], this approach is extended to a model in which all the α�’s may
vary, but with the hypothesis that α� goes to zero faster than 1/ log(�). In this paper, we take
a simulational approach to points on the fully occupied unit lattice, with cycle weights con-
stant in �—removing the decaying-cycle-weight hypothesis. The shift in critical temperature
is nonetheless found to match that predicted by Betz and Ueltschi.

An outline of the paper is as follows. Section 2 provides background necessary to un-
derstand the results of the paper: the probability model is defined in Sect. 2.1; qualitative
and quantitative behavior of long cycles are discussed in Sects. 2.2 and 2.3, respectively.
Known results and conjectures are listed in Sect. 2.4. In Sect. 3, the simulational methods
are presented. The swap-only and swap-and-reverse algorithms generate simulational data;
these algorithms are proved correct in Sects. 3.1 through 3.3. The finite-size-scaling method,
which reduces the raw simulational data, is summarized in Sect. 3.5. Section 4 presents the
data and its analysis in full detail: estimation of critical exponents and critical temperature
in Sects. 4.1 through 4.3, verification of the finite-size-scaling hypothesis in Sect. 4.4, and
final results in Sects. 4.5 through 4.7.

2 The Model of Random Spatial Permutations

Here we review concepts from [3, 4], fixing notation and intuition to be used in the rest of
the paper.

2.1 The Probability Model

The state space is ��,N = �N × SN , where � = [0,L]3 with periodic boundary conditions;
point positions are X = (x1, . . . ,xN) for x1, . . . ,xN ∈ �. The Hamiltonian takes one of two
forms. In the first, relevant to the Bose gas, we have

H(X,π) = T

4

N∑

i=1

‖xi − xπ(i)‖2
� +

∑

i<j

V (xi ,xπ(i),xj ,xπ(j)) (2.1)

where T = 1/β and the V terms are interactions between permutation jumps. (The tem-
perature scale factor T/4, not β/4, is surprising but correct for the Bose-gas derivation of
the Hamiltonian.) In the second form of the Hamiltonian, considered in this paper, we use
interactions which are dependent solely on cycle length:

H(X,π) = T

4

N∑

i=1

‖xi − xπ(i)‖2
� +

N∑

�=1

α�r�(π), (2.2)

where r�(π) is the number of �-cycles in π and the α�’s are free parameters, called cycle
weights. One ultimately hopes to choose the α�’s appropriately for the Bose gas; even if not,
the model is well-defined and of its own interest.

Different choices of α� result in different models: The non-interacting model [9] has
α� ≡ 0. The two-cycle model [3, 20], has α2 = α and other cycle weights are zero. The
general-cycle model has no restrictions on α�. In [4], the decaying cycle-weight case of the
general-cycle model is considered: the only restriction on α� is that α� goes to zero in �

faster than 1/ log�. The Ewens model, treated in this paper (see also [7]), is another special
case of the general-cycle model: it has α� ≡ α constant in �.
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Fig. 1 A spatial permutation

Fig. 2 Some typical permutations for high T , medium but subcritical T , and low T

One may hold point positions fixed, e.g. on the fully occupied unit lattice; this approach
has been taken for all simulations done up to the present by the author and by Gandolfo
[9], including specifically the work described in this paper. One obtains a Gibbs probability
distribution on SN :

Y (�,X) =
∑

σ∈SN

e−H(X,σ ), P (π) = e−H(X,π)

Y (�,X)
. (2.3)

(Alternatively, one may integrate over all positions in �, with a resulting Gibbs distribution
on SN . Here, several analytical results are available [3, 4].) For a random variable S(π), we
have

E[S] =
∑

π∈SN

P (π)S(π). (2.4)

2.2 Qualitative Characterization of Long Cycles

One next inquires which permutations are typical in this temperature-dependent probability
distribution on SN . In this section we develop intuition; in the next section, we construct
quantitative descriptions of the ideas presented here.

As T → ∞, the probability measure becomes supported only on the identity permuta-
tion: the distance-dependent terms are large whenever any jump has non-zero length. For
large but finite T , there are tiny islands of 2-cycles, 3-cycles, etc. On the other hand, as
T → 0, length-dependent terms go to zero, and the probability measure approaches the uni-
form distribution on SN : the distance-dependent terms all go to zero. For intermediate T , one
observes that the length ‖π(x) − x‖� of each permutation jump remains small, increasing
smoothly as T drops.
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Fig. 3 Order parameter fM = E[�max]/N for finite systems, with α = 0,0.004. Interactions increase the
critical temperature. The shift is slight, but visible; we work in the regime of small interaction parameters.
See Sect. 4 for a quantitative analysis of this shift

For T above a critical temperature Tc , all cycles are short: two-cycles, three-cycles, and
so on. We find Tc ≈ 6.86 at α = 0, and positive α terms increase Tc . At Tc , though, there is a
phase transition: for T < Tc jump lengths remain short but long cycles form. Quantitatively,
let �max be the length of the longest cycle in π , with E[�max] its mean over all permutations.
We observe that for T > Tc , E[�max] grows only perhaps as fast as log(L) as L → ∞.
That is to say, E[�max]/N goes to zero as N → ∞. For T < Tc , on the other hand, E[�max]
scales with N , i.e. E[�max]/N approaches a temperature-dependent constant as N → ∞:
there are arbitrarily long cycles, or infinite cycles, in the infinite-volume limit. See Fig. 2 for
depictions of typical permutations at high T , subcritical T , and low T ; see Fig. 3 for plots
of E[�max]/N as a function of T for various system sizes with N = L3. Note in particular
that higher alpha shifts the order-parameter curve to the right, with resulting upward shift in
critical temperature Tc .

Feynman’s claim for the Bose gas is that Bose-Einstein condensation occurs if and only
if there are infinite cycles in the infinite-volume limit. The central point of this approach
is that the system energy has been recast in terms of permutations, which are amenable to
analysis and simulation. This permits a new perspective on the venerable question: how does
the critical temperature of Bose-Einstein condensation depend on inter-particle interaction
strength?

Obtaining a full answer to this notoriously difficult question is a long-term project. As
an intermediate step, we here consider the Ewens cycle-weight Hamiltonian with point po-
sitions on the unit fully occupied unit lattice. Through careful use of MCMC algorithms,
statistical analysis, and finite-size scaling, we are able to quantify the dependence of critical
temperature on interaction strength.
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2.3 Quantitative Characterization of Long Cycles

Various order parameters may be defined; all of them may be used to locate the critical
temperature Tc(α). The fraction E[�max]/N discussed above will, for brevity, be hereafter
referred to as fM . The fraction of sites in long cycles, fI , is described in detail in [9]. The
correlation length ξ(T ) is defined to be the spatial length of the cycle containing a given
point x: for T < Tc , it blows up as L increases. Namely, we define

sx(π) = ‖π(x) − x‖� and s(π) = 1

N

N∑

i=1

sxi
(π).

The expectation over all π of sx is the same as s, of course; in a Monte Carlo simulation,
however, the latter yields a larger sample size and thus a smaller error bar. We use ξ(T ) =
E[s].

Winding numbers count the integer number of x, y, z wraps around the 3-torus (� with
periodic boundary conditions). Specifically, the winding number of a permutation π is the
triple

W = (Wx,Wy,Wz) = 1

L

N∑

i=1

d�(xπ(i),xi ), (2.5)

where d� is the difference vector defined as follows. For z ∈ �, we define a zero-centered
modulus vector mL(z). For x,y ∈ �, this gives rise to a difference vector d�(x,y):

mL(z) =
⎛

⎝
mL(z1)

mL(z2)

mL(z3)

⎞

⎠ (2.6)

nL(z) = n ∈ Z which minimizes |z + nL| (2.7)

mL(z) = z + nL(z)L (2.8)

d�(x,y) = m�(x − y). (2.9)

We also write

W2 = W · W = W 2
x + W 2

y + W 2
z .

The scaled winding number [14] is

fS = 〈W2〉L2

3βN
.

Lastly, the order parameter fW is the fraction of sites which participate in winding cycles.
The order parameters fI (T ), fS(T ), and fW(T ) show behavior similar to fM :=

E[�max]/N (Fig. 3): asymptotically as N → ∞, they are zero for T ≥ Tc and non-zero
for T < Tc . For finite N , the curves remain analytic: finite-size effects persist. The inverse
correlation length 1/ξ(T ), on the other hand, is zero for T ≤ Tc and non-zero for T > Tc .

Our goal is to quantify the dependence of Tc on α, where

�Tc(α) = Tc(α) − Tc(0)

Tc(0)
. (2.10)

Known results and conjectures are formulated quantitatively in terms of limα→0 �Tc(α).



62 J. Kerl

2.4 Known Results and Conjectures

Known results for point locations averaged over the continuum are obtained largely using
Fourier methods [4], which are unavailable for point positions held fixed on the lattice.
Betz and Ueltschi have determined �Tc(α), to first order in α, for two-cycle interactions
[3] and decaying cycle weights [4]. (This taps into a long and controversial history in the
physics literature: see [1] or [16] for surveys.) The critical (ρ,T ,α) manifold relates ρc to
Tc . Specifically,

ρc(α1, α2, . . .) =
∑

�≥1

e−α�

∫

R3
e−�4π2β‖k‖2

dk = 1

(4πβ)3/2

∑

�≥1

e−α��−3/2 (2.11)

�Tc(α) = cρ1/3α, for α ≈ 0. (2.12)

Using this formula for constant cycle weights α� ≡ α and for lattice density ρ = 1, we have

ρc = ζ(3/2)e−α

(4πβ)3/2
, Tc = 4πe2α/3

ζ(3/2)2/3
≈ 6.626e2α/3,

�Tc(α) = Tc(α) − Tc(0)

Tc(0)
= e2α/3 − 1 ≈ 2α

3
, c ≈ 0.667.

(2.13)

We inquire whether this result, obtained for decaying cycle weights with point positions
varying on the continuum, holds for Ewens weights with point positions held fixed on the
lattice.

For α� ≡ 0 (the non-interacting model), E[�max]/NfI is constant for T below but near Tc .
(That is, the two order parameters fI and E[�max]/N have the same critical exponent.) For
uniform-random permutations (Shepp and Lloyd 1966 [17] solved Golomb’s 1964 question
[10]), E[�max]/N ≈ 0.6243; unpublished work of Betz and Ueltschi has found E[�max]/NfI

is that same number for the non-interacting case α� ≡ 0. The intuition is that long cycles
are uniformly distributed within the zero Fourier mode. (This was proved in Sect. 5 of [18].
Other results on the distribution of the length and number of cycles for probabilities de-
pending only on the conjugacy class can be found in Sects. 2 and 5 of [18], and in [19].) We
conjecture that E[�max]/NfI is α-dependent but constant in T (for T below but near Tc) for
all interaction models.

We suspect that the fine details of point positions are unimportant for the shift in critical
temperature. Thus, �Tc(α) on the lattice should be similar to that on the continuum, if
decaying cycle weights are used. For Ewens interactions, though, �Tc(α) is theoretically
unknown for Ewens interactions with points either on the continuum or on the lattice. The
simulational treatment in this paper is the only known attack on this question.

3 Simulational Methods

We run Markov chain Monte Carlo experiments for various values of L, T , and inter-
action strength α. For each parameter combination, we generate M typical permutations
π1, . . . , πM from the stationary distribution, using MCMC algorithms described below, and
we compute random variables Xi = X(πi). (The values of M used are 105 away from Tc ,
and 106 near Tc where sample variance is higher.) We find the sample mean and estimate the
variance of the sample mean. The correlation of the Xi ’s complicates the latter. Finite-size
scaling compensates for finite-size effects: mathematically, we are interested in estimating
infinite-volume quantities based on finite-volume numerical experiments.
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Fig. 4 Metropolis moves for the
swap-only algorithm

3.1 The Swap-Only Algorithm

Recall from Sect. 2.1 that the expectation of a random variable S (such as ξ , fM , fW , fI ,
fS ) is

E[S] =
∑

π∈SN

P (π)S(π).

The number of permutations, N !, grows intractably in N . As is typical in Markov chain
Monte Carlo methods [2, 12], one contents oneself with a smaller number of samples: the
expectation is instead estimated by summing over some number M (105 or 106) of typical
permutations.

The swap-only algorithm for sampling from the Gibbs distribution (2.3) is as follows:

• Start with the identity or uniform-random permutation.
• Sweep through sites x of the lattice in either lexical or uniform-random order.
• For each site x, do a Metropolis step:

– Choose a site π(y) from among the six nearest neighbors of π(x).
– Propose to change π to the permutation π ′ which has π ′(z) = π(z) for all z 
= x,y but

π ′(x) = π(y) and π ′(y) = π(x). (See Fig. 4.)
– With probability proportional to min{1, e−�H } where �H = H(π ′) − H(π), accept

the change. (If the change is rejected, π ′ = π .)
• After each sweep, obtain a value of each random variable for inclusion in computation of

its sample mean.

One starts accumulating data only after a suitable number of thermalization sweeps. The
idea is that the initial, identity permutation is not typical, nor are the first few afterward.
The integrated autocorrelation time [2] of system energy H gives an idea of how many
Metropolis sweeps should be discarded before the permutations become typical. Also, one
may examine H to ensure that it has reached its long-term average value. This is explained
in detail in [11]. We next prove correctness of this algorithm.

3.2 Explicit Construction of the Markov Matrix

For Sect. 3.3 we will need an explicit construction of the Markov matrix corresponding to
the swap-only algorithm as described in Sect. 3.1. The Markov perspective on the algorithm
is that the distribution P (0)(π) of the first permutation is either supported solely on the
identity, or uniform on all N ! permutations. The distribution for subsequent permutations is

P (k+1)(π ′) =
∑

π∈SN

P (k)(π)M(π,π ′)

or, in matrix/vector notation,

P(k+1) = P(k)M.

In this section we precisely describe the matrix M; in Sect. 3.3 we show that P(k) approaches
the Gibbs distribution (2.3).
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The matrix M is N ! × N !: rows are indexed by π1, . . . , πN ! and columns are indexed by
π ′

1, . . . , π
′
N !. Most of the entries of M are zero: Metropolis steps change only two permuta-

tion sites whereas most π,π ′ differ at more than two sites.

Definition 3.1 For π,π ′ ∈ SN , define

d(π,π ′) = #{i = 1,2, . . . ,N : π(i) 
= π ′(i)}.

Remark Note that d(π,π ′) 
= 1 since if two permutations agree on N − 1 sites, they must
agree on the remaining site. It is easily shown that the function d(π,π ′) is a metric on SN .

Definition 3.2 Lattice sites x,y are nearest-neighbor if ‖x − y‖� = 1.

Definition 3.3 For π ∈ SN , define

R(π) = {π ′ ∈ SN : d(π,π ′) = 2 and ‖π(x) − π(y)‖� = 1}
where the x and y are taken to be the two points at which π,π ′ differ. Then R(π) is the set
of permutations π ′ reachable from π on a swap.

We construct the Markov matrix for use when sites x are selected at uniform random.
(The matrices for use when x is selected sequentially are similar.) For each π ∈ SN ,

M(π,π ′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
3N

(
1 ∧ e−H(π ′)+H(π)

)
, π ′ ∈ R(π),

1 −
∑

π ′′∈R(π)

1

3N

(
1 ∧ e−H(π ′′)+H(π)

)
, π = π ′;

0, otherwise.

(3.4)

To justify the choice of prefactor 1/3N , note that there are N choices of lattice points x. For
each x, there are 6 choices of π(y) which are nearest neighbors to π(x). This double-counts
the 3N distinct choices of π ′ reachable from π in a single Metropolis step, since choosing
x and then y results in the same Metropolis step as choosing y and then x.

3.3 Correctness of the Swap-Only Algorithm

It is clear that the swap-only algorithm produces a sequence of permutations, but with what
distribution? From Markov-chain theory, we know the following: If the chain is irreducible,
aperiodic, and satisfies detailed balance, then the chain has the Gibbs distribution (2.3) as its
unique invariant distribution.

We note the following terminology: detailed balance is the same as reversibility. Also, an
irreducible, aperiodic chain on a finite state space is called ergodic. Also note from Markov-
chain theory that all states in a recurrence class have the same period. Thus, if we can show
that the chain is irreducible (i.e. the entire state space is a single recurrence class), then for
aperiodicity of the chain it suffices to show that a single state (e.g. the identity permutation)
has period 1.

Proposition 3.5 (Irreducibility) For all π,π ′, there is an n such that Mn(π,π ′) > 0. That
is, any permutation is reachable from any other.
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Fig. 5 A sequence of (nearest-neighbor) swaps which results in a non-nearest-neighbor swap

Proof Transpositions generate SN : for all π ∈ SN , there exist transpositions σ1, . . . , σm such
that π = ∏m

j=1 σj . Thus, it suffices to show that given any permutation π and any two points
x and z, so π : x �→ π(x) and π : z �→ π(z), we can construct a sequence of swaps sending
π to π ′ so that π ′ : x �→ π(z), π ′ : z �→ π(x), and π ′(y) = π(y) for all y 
= x, z. (If π(x) and
π(z) are nearest-neighbor lattice sites, of course, then a single swap does the job.)

Define Ga,b : SN → SN to be the swap operator for nearest-neighbor lattice sites π(a)

and π(b). Write π ′ = Ga,bπ . Given x and z, there is a (non-unique) sequence of lat-
tice sites y0,y1,y2, . . . ,yn such that y0 = x, yn = z, and ‖π(yi+1) − π(yi )‖� = 1 for
i = 0,1, . . . , n − 1. (See Fig. 5.) We will construct a sequence of swaps along this nearest-
neighbor path whose end result is to swap the permutation arrows starting at x and z, leaving
all other arrows unchanged. We first need a lemma about compositions of swaps.

Notation 3.6 Given x1, . . . ,xN and a permutation π , we may write π as an image map with
the xi ’s along the top row and their images along the bottom row:

(
x1 . . . xN

π(x1) . . . π(xN)

)
.

We find that the composition of maps

(Gyn,y1 ◦ Gyn,y2 ◦ . . . ◦ Gyn,yn−2 ◦ Gyn,yn−1) ◦ (Gy0,yn ◦ Gy0,yn−1 ◦ . . . ◦ Gy0,y2 ◦ Gy0,y1)

(3.7)

swaps the images of x = y0 and z = yn while leaving all other images unchanged, that is,
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

�→
(

y0 y1 . . . yn−1 yn

π(yn) π(y1) . . . π(yn−1) π(y0)

)
. �

Remark Below we will discuss winding numbers, and the empirical fact that the swap-only
algorithm changes them only rarely. The chain is irreducible but various non-zero transition
probabilities can still be very small.

Definition 3.8 The period of π is

p(π) = gcd{n : P (
n = π | 
0 = ω) > 0}
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where 
k is the random variable which is the permutation appearing at the kth step of the
Markov chain. We say that π has period p if it reappears with probability 1 after every p

steps. A permutation π is aperiodic if p(π) = 1. The chain is aperiodic if p(π) = 1 for
every π .

Proposition 3.9 (Aperiodicity) The swap-only algorithm’s Markov chain is aperiodic.

Proof This follows from irreducibility, which says in particular that for every π , there is an
integer m such that Mm(π,π) > 0. Then Mn(π,π) > 0 for all n > m, implying p(π) = 1. �

Proposition 3.10 (Detailed balance) For all π,π ′ ∈ SN ,

P (π)M(π,π ′) = P (π ′)M(π ′,π). (3.8)

Proof The detailed-balance statement in terms of the Gibbs distribution (2.3) and the
Metropolis transition matrix (3.4) is

e−H(π)

Z

(
1 ∧ e−H(π ′)eH(π)

)
?= e−H(π ′)

Z

(
1 ∧ e−H(π)eH(π ′)

)
.

The Z’s cancel. The lemma below shows that M(π,π ′) 
= 0 iff M(π ′,π) 
= 0. If M(π,π ′) =
0, then detailed balance holds. If M(π,π ′) 
= 0, then there are two cases. If H(π ′) ≤ H(π),
then

e−H(π) (1) = e−H(π ′)
(
e−H(π)eH(π ′)

)
.

If H(π ′) > H(π),

e−H(π)
(
e−H(π ′)eH(π)

)
= e−H(π ′) (1) .

In all cases, detailed balance holds. �

Lemma 3.12 For all π,π ′ ∈ SN ,

M(π,π ′) 
= 0 ⇐⇒ M(π ′,π) 
= 0.

Proof This is true since π ′ ∈ R(π) if and only if π ∈ R(π ′), which is a direct consequence
of Definition 3.3 of R(π). �

This lemma completes the proof that the swap-only algorithm satisfies detailed balance
and thus has the Gibbs distribution as its invariant distribution. It is not hard to show that if
swaps sites x 
= y are in the same cycle before a swap, they are in different cycles after the
swap, and vice versa. This is not a correctness result, but rather a sanity check: it shows that
cycles may grow or shrink upon swap-only moves.
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Fig. 6 Swaps merge disjoint cycles and split single cycles. The left-hand permutation can be reached from
the right-hand permutation via a swap, and vice versa

Fig. 7 Conservation of winding number in the swap-only algorithm

3.4 Winding Cycles and the Swap-and-Reverse Algorithm

The propositions of Sect. 3.3 showed that the swap-only algorithm is correct—in particular,
any permutation is reachable from any other with non-zero probability. However, in practice
some of these non-zero transition probabilities can be quite small. In particular, we observe
that the swap-only algorithm almost always generates permutations with zero winding num-
ber.

This problem, and a partial solution, is explained intuitively by Fig. 7 and rigorously in
[11]. Part 1 of the figure shows a permutation π with a long cycle on the torus which almost
meets itself in the x direction. In part 2, after a Metropolis step sending π to π ′, one cycle
winds by +1 and the other by −1. Metropolis steps create winding cycles only in opposite-
direction pairs; the total Wx(π) is still zero. Part 3 of the figure shows that if we reverse one
cycle (which is a zero-energy move), Wx(π) is now 2. In general (with full details in [11]),
winding numbers of even parity can be generated.

Our current best algorithm (swap-and-reverse) has two types of sweeps: (1) For each
lattice site, do a Metropolis step as above. (2) For each cycle in the permutation, reverse the
direction of the cycle with probability 1/2. This permits winding numbers of even parity in
each of the three axes.

We have experimented with various methods to obtain winding numbers of all parities.
The creation or destruction of a winding cycle is a non-local update; one is reminded of the
Swendsen-Wang algorithm for the Ising model. However, our attempt at non-local updates
has an unreasonably low acceptance rate, namely, on the order of e−L where L is the box
length.

We have also created a worm algorithm, inspired by approaches to this same winding-
number problem in path-integral Monte Carlo methods [5, 15]. That is, a permutation loop
is selected at random and then cut open at a randomly selected point. The resulting worm
is allowed to move around � via Metropolis moves; eventually, it closes again. This worm
algorithm has an elegant theory and correctness proof [11]; yet, it has an unacceptably long
stopping time for loop closure, and none of our attempts to remedy the stopping-time prob-
lem have satisfied detailed balance.

At present, we content ourselves with the swap-and-reverse algorithm; it is used to gen-
erate all the results discussed in Sect. 4. The order parameters fS and fW depend on winding
phenomena, but the other three, 1/ξ , fI , and fmax, do not; furthermore, results obtained in
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Sect. 4 using each of the five order parameters are, for the most part, compatible. Yet, as we
will see, fS and fW do not permit successful finite-size scaling.

3.5 Finite-Size Scaling

Finite-size scaling takes the form of a hypothesis, or rather a set of hypotheses, which is
tested against the data. See also [6] for a nice survey.

We have an infinite-volume random variable S(T ), e.g. any of the order parameters de-
fined in Sect. 2.3. The finite-volume quantity is SL(T ). Define t = (T − Tc)/Tc . Examine,
say, 0.99 < t < 1.01. The first hypothesis is that the correlation length ξ(T ) follows a power
law

ξ(T ) ∼ |t |−ν, T → Tc.

For the infinite-volume quantity, we expect a power-law behavior

S(T ) ∼ tρ, (−t)ρ, or |t |ρ.
(The domain of validity is t < 0 or t > 0 depending on whether the order parameter S is left-
sided or right-sided, respectively.) One moreover hypothesizes that for T near Tc , SL(T ) and
S(T ) are related by a universal function QS which depends on T only through the ratio L/ξ :

SL(T ) = L−ρ/νQS(L
1/ν t) ∼ L−ρ/νQS((L/ξ)1/ν). (3.13)

4 Results

Here we complete the steps sketched in Sect. 3.5. The flow of data and uncertainties are as
follows:

• Markov chain Monte Carlo simulations, with error bars determined using the method
of integrated autocorrelation time [2], yield SL(T ,α) data points. There are five order
parameters S, six values of L (30, 40, 50, 60, 70, 80), nine values of α, and a few dozen
values of T for each α.

• CPU time per L,T ,α experiment, with 105 Metropolis sweeps, is approximately 1.3
hours for L = 40 and 20 hours for L = 80. For the work described in this paper and
in [11], a total of 5.4 CPU years was used.

• For each S, L, and α, we use SL(T ,α) values for all available values of T and α to esti-
mate ρ̂S(L). (Critical exponents are assumed to be independent of α for small α, or with
weak enough dependence on α that that dependence is lost in the noise.) Error bars may
be propagated from the MCMC simulations, or computed from regression uncertainties.

• Extrapolating ρ̂S(L) in L → ∞ results in the five estimated critical exponents ρ̂S . Uncer-
tainties are computed from the regression analysis.

• Once the critical exponents are estimated, we obtain T̂c,S(α) for each of the five order
parameters S and for each α. Uncertainties are computed by visual inspection of the
crossing plots discussed in Sect. 4.3.

• Once the critical exponents and Tc are known, one should be able to obtain plots of the
universal function QS which is, up to sampling variability, independent of L, T , and α.
This verifies the finite-size-scaling hypothesis.

• The shift in reduced critical temperature is as in (2.10). Error bars are computed from
regression uncertainties.
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Fig. 8 Order parameters fM and 1/ξ for L = 40,60,80 and α = 0 and 0.004. The remaining order parame-
ters fS , fW , and fI behave similarly to fM but with not all with the same critical exponents

Fig. 9 On the left: determination of critical exponent ρ̂S (L,α) for order parameter fS , as the value which
minimizes linear-regression error for SL(T ,α)1/ρ . Visually, one sees ρ̂S (L = 80, α = 0.0) ≈ 0.59. On the
right: estimated critical exponents for L = 30,40,50,60,70,80

4.1 Determination of L-Dependent Critical Exponents

For each of order parameter S, interaction parameter α, and box length L, we examine all
S(L,T ,α) data for which S > ε, with ε taken from the plots to ensure that we examine
the portions of the curves corresponding to non-zero order parameter in the infinite limit
(see Fig. 8). For 1/ξ , this means T > Tc; for the other four order parameters, this means
T < Tc . From plots such as those in Fig. 8, we choose ε to be 0.1 for 1/ξ , 0.01 for fM ,
0.01 for fI , 0.05 for fS , and 0.01 for fW . For each S, α, and L, we then apply linear
regression to S(L,T )1/ρS for varying ρS . We find ρ̂S(L) which optimizes the correlation
coefficient [21] of the linear regression. Results are shown in Fig. 9. Given ρ̂S(L) along
with its corresponding linear-regression parameters m and b, we may plot a power-law fit to
the simulational data. One such comparison plot is shown in Fig. 10.

4.2 Extrapolation of Critical Exponents for the Infinite-Volume Limit

Next, for each S, given estimates ρ̂S(L) for increasing values of L, we plot ρ̂S(L) versus
1/L. The vertical intercept of this plot estimates the infinite-volume exponent ρ̂S(α). (See
Fig. 9.) Results are shown in Table 2.

4.3 Determination of Critical Temperature

Given the above estimators of the critical exponents, the crossing method [6] estimates
Tc(α). Namely, we plot Lρ̂/ν̂SL(T ) as a function of T . At T = Tc we have t = 0 and
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Fig. 10 Power-law fit vs. simulational data for order parameter fS , α = 0

Table 1 fM/fI as a function of α. An upward trend is visible, but it is not pronounced

α Mean Std.err. Count

0.000 0.6242981 0.0000897 78

0.0001 0.6243312 0.0001079 78

0.0002 0.6245691 0.0000921 72

0.0005 0.6245402 0.0001062 66

0.0008 0.6244347 0.0000856 72

0.001 0.6244779 0.0001020 60

0.002 0.6246345 0.0001154 42

0.003 0.6245906 0.0001559 48

0.004 0.6245966 0.0001964 42

Table 2 Extrapolated estimates
of the infinite-volume critical
exponents, found from the
vertical intercept of Fig. 9

ν̂ 0.5559 ± 0.0037

ρ̂S 0.6201 ± 0.0065

ρ̂W 0.7750 ± 0.0073

ρ̂I 0.7451 ± 0.0052

ρ̂M 0.7486 ± 0.0059

Lρ/νSL(T ) = QS(0), regardless of L (3.13). Thus, these curves will cross (approximately,
due to sampling variability) at T = Tc . If they do not, the finite-size-scaling hypothesis is
not verified. (Note in particular that for order parameter 1/ξ whose critical exponent is ν,
we apply the crossing method to LSL(T ) as a function of T : thus, the Tc(α) estimate using
1/ξ is independent of ν̂.) See for example Fig. 11. (We acknowledge that larger values of
L, would improve the visual effect. Results presented here are those obtained within the
timeframe of the author’s doctoral dissertation work.) Results are in Fig. 13.

Using order parameters fS and fW , which depend on winding phenomena, one does not
see clear crossing behavior. We suggest that either this is related to the even-winding-number
issue discussed in Sect. 3.4, or fS and fW are not good order parameters for this model.
We suspect the former; in every manner except this crossing issue, fS and fW behave as
expected. (In the absence of clear crossing behavior for fS and fW , for the sake of discussion
we nonetheless provide best visual estimates for T̂c(α) for fS and fW . These will not be used
for further analysis toward our final result.)
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Fig. 11 The crossing method to estimate Tc(α) for order parameter fI , with ρ̂ and ν̂ as above: Tc(α)

corresponds to the horizontal coordinate of the intersection point of the plots. The upper-right-hand plot is
a close-up of the upper-left-hand plot. Order parameters fS and fW , which depend on winding phenomena,
do not exhibit clear crossing behavior

Fig. 12 Collapse plot for order parameter 1/ξ

4.4 Verification of Finite-Size-Scaling Hypothesis

Now that we have estimated ρS , ν, and Tc(α) for each of the five order parameters S, we may
plot LρS/νSL(T ,α) as a function of L1/ν t . This is a plot of the scaling function QS . If the
hypothesis is correct, the curves for all L should coincide, or collapse, to within sampling
error—which they do (e.g. Fig. 12).

4.5 Determination of the Shift in Critical Temperature

As discussed in Sect. 2.4, we are seeking a linear relationship between �Tc(α) and α, with
constant c. This can be visualized in Fig. 14, which is obtained from the Tc,S(α) data of
Fig. 13 using (2.10). We start with all the (α,�Tc(α)) data points from Sect. 4.3. We omit
values obtained using fS and fW , due to the aforementioned lack of crossing behavior. We
also omit values obtained using α = 0.004, since the critical-temperature plots of Fig. 13
suggests that this starts to exceed the domain of linear approximation. We perform a linear
regression with error bars [21] on the (α,�Tc(α)) data points. We use a slope-only fit, rather
than a slope-intercept fit, since �Tc(α) has zero intercept by its definition. We find

c = 0.618 ± 0.086 (2σ error bar).

Within experimental uncertainty, this result, for points on the lattice with Ewens cycle-
weights, matches the c value of (2.11) for point positions varying on the continuum with
decaying-cycle-weight interactions.

4.6 Constancy of the Macroscopic-Cycle Quotient

As discussed in Sect. 2.4, we hypothesize that the macroscopic-cycle quotient fM/fI in
the infinite-volume limit is dependent on α but is constant in T where it is defined, i.e. for
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Fig. 13 Critical temperature as function of α

Fig. 14 Shift in critical temperature, and linear fit, as function of α. Recall from (2.10) that
�Tc(α) = Tc(α)−Tc(0)

Tc(0)
. Order parameters fS and fW were omitted from the fit, due to lack of crossing

behavior; α = 0.004 was omitted due to onset of curvature of Tc(α). The heavy solid line shows a linear fit
with empirically determined constant of proportionality; the lighter solid line is the comparison value of Betz
and Ueltschi (slope 2/3) for decaying cycle weights and continuum point positions

T < Tc since fI = 0 for T > Tc . This may be visualized by comparing figures such as 3:
one sees that fM and fI appear to have the same critical exponent. Alternatively, one may
plot the ratio fM/fI (Fig. 15). In the infinite-volume limit, fI is zero for T > Tc and so we
are interested only in the values of the quotient for T < Tc . In that region, the quotient does
indeed appear to be constant in T .

We test this constancy hypothesis as follows. The respective critical exponents are ρM

and ρI . The estimators are ρ̂M and ρ̂I , computed by averaging over several different values
of L and α as described in Sect. 4.2. Treating these estimators as normally distributed (as
justified by the raw data), we obtain the standard deviations of the ρ̂M,I (L,α) samples, along
with the standard deviations of the means ρ̂M,I :

ρ̂M = 0.7482 ρ̂I = 0.7445

sM = 0.0428 sI = 0.0374

nM = 50 nI = 50

sM/
√

nM = 0.006059 sI /
√

nI = 0.005295.

The difference ρ̂M − ρ̂I is also normally distributed about the true mean ρM − ρI , but
ρ̂M and ρ̂I are not independent since they are sample means of random variables computed



Shift in Critical Temperature for Random Spatial Permutations 73

Fig. 15 Macroscopic-cycle quotient fM/fI for α = 0,0.002

from the same Markov chain Monte Carlo sequence of permutations. Thus

Var(ρ̂M − ρ̂I ) = Var(ρ̂M) + Var(ρ̂I ) − 2Cov(ρ̂M, ρ̂I ).

Computing the sample covariance of the ρ̂M(L,α) and ρ̂I (L,α) data series, we obtain the
covariance and resulting standard error sd of the difference

Cov(ρ̂M, ρ̂I ) = 0.0004 sd/
√

n = 0.0070.

Normalizing, we find

ρ̂M − ρ̂I = 0.0037
ρ̂M − ρ̂I

sd/
√

n
= 0.0037

0.0070
= 0.5293.

We hypothesize ρM − ρI = 0; the estimated value ρ̂M − ρ̂I lies comfortably within a
standard deviation of this. We note, moreover, that the value of fM/fI , while constant in T ,
trends upward with α (see Table 1 and Fig. 16). This merits further investigation.

4.7 Conclusions

(1) For annealed point positions, (2.13) gives Tc(0) ≈ 6.625. Our result Tc(0) = 6.873 ±
0.006 (2σ error bar) unambiguously shows that the lattice structure modifies the critical
temperature, even in the non-interacting (α = 0) case.

(2) As detailed in Sect. 4.5, we find that the reduced shift in critical temperature as a
function of interaction parameter α is

�Tc(α) ≈ Tc(α) − Tc(0)

Tc(0)
= cα
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Fig. 16 fM/fI as a function of α

with

c = 0.618 ± 0.086 (2σ error bar).

This is compatible (Sect. 2.4) with the related result of [4]. Even though the lattice structure
changes the critical temperature (conclusion 1), the shift in critical temperature is unaffected.

(3) As described in Sect. 2.4, Shepp and Lloyd [17] find that E[�max]/N ≈ 0.6243
for uniform-random (non-spatial) permutations. For spatial permutations, we define a
macroscopic-cycle quotient E[�max]/NfI which is the ratio of mean maximum cycle length
as a fraction of the number of sites in long cycles. Our result (Table 1) is compatible with
that of Shepp and Lloyd for the non-interacting case, with an increase which appears to be
linear as a function of interaction parameter α. Our result is also compatible with [9], which
(among other conclusions) recovered the Shepp and Lloyd result for the α = 0 case.

5 Future Work

Now that the α-dependence of the macroscopic-cycle quotient’s constant upon α has been
found empirically, one would next like to explain that dependence analytically.

Ideally, one would have an algorithm to permit odd winding numbers, as discussed in
Sect. 3.4.

Sampling from the true Bose-gas distribution using the random-cycle model requires
three changes. First, one needs to conduct simulations using the Bose-gas interaction (2.1)
rather than the cycle-weight interaction (2.2). The interaction term V is a CPU-intensive
Brownian-bridge computation [3]; unpublished work of Ueltschi and Betz shows that it may
be approximated in the weak-interaction case by a simpler Riemann integral. Precomputed
tables and interpolation may make use of this integral feasible. Second, point positions must
be allowed to vary on the continuum. This entails a second type of Metropolis step, in addi-
tion to that shown in Sect. 3.1. Third, since points are no longer held fixed on the lattice, it
is no longer trivial to find nearest neighbors. Software efficiency requires a hierarchical par-
titioning of �. The second and third points simply require a software effort. Implementing
them will be worthwhile only if the interaction terms can be simplified to the point that they
are computationally feasible, which is a mathematical effort.
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